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ABSTRACT

Researchis underway at the NASA Johnson Space Center on the development of vision

systems that recognize objects and estimate their position by processing their images. This is a crucial
task in many space applications such as autonomous landing on Mars sites, satellite inspection and
repair, and docking of space shuttle and space station. Currently available algorithms and hardware
are too slow to be suitable for these tasks. Electronic digital hardware exhibits superior performance

in computing and control; however, they take too much time to carry out important signal processing
operations such as Fourier transformation of image data and calculation of correlation between two

images. Fortunately, because of the inherent parallelism, optical devices can carry out these
operations very fast, though they are not quite suitable for computation and control type of

operations. Hence, investigations are currently being conducted on the development of hybrid vision
systems that utilize both optical techniques and digital processing jointly to carry out the object
recognition tasks in real time.

The author of this report, during his tenure as a summer faculty fellow at the Johnson Space
Center studied the various aspects of this research. He collaborated with Dr. Richard juday and his
colleagues on developing algorithms for the design of optimal filters for use in hybrid vision systems.
Specifically, an algorithm was developed for the design of real-valued frequency plane correlation
filters. Further, research was also conducted on designing correlation filters optimal in the sense of
providing maximum slgnal-to-noise ratio when noise is present in the detectors in the correlation
plane. Algorithms were developed for the design of different types of optimal filters: complex filters,
real-valued filters, phase-only filters, ternary-valued filters, coupled filters. This report presents
some of these algorithms in detail along with their derivations.
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INTRODUCTION

Recognition of objects by machines is a vital task in many applications related to NASA
missions. Docking of space shuttle and space station, extra-vehicular activities by robots, and
autonomous landing on Mars are some examples of such applications. To carry out the tasks

efficiently and accurately in real time, suitable technologies are being investigated. Most of these
tasks involve some form of processing of images acquired using a camera. A straightforward

approach is to use electronic digital hardware to carry out the necessary processing involved in the
recognition of objects. Researchers in many universities and research laboratories around the world
are working on the development and evaluation of algorithms for such processing and pattern
recognition. One major drawback of the electronic processing technique is that at the current

technology, the algorithms take too much time to be suitable for real time applications.
An alternate technology that is under investigation by many researchers is the use of optical

processing. Since through optical techniques processing can be done in a parallel mode, very high
speed can be achieved. Taking Fourier transformation, multiplication of a signal by a filter, and
obtaining correlation function of two images are some of the operations that optical processing can
efficiently perform. However, some operations such as storage and retrieval of data, arithmetic
operations, etc., cannot so easily be done using optical techniques. Hence, a hybrid system employing
optical techniques for correlation filtering and electronic digital techniques for image storage,
retrieval, correlation plane processing, etc., is being investigated for development and use in vision

systems.
One major area of investigation in the development of hybrid vision systems is the design of

optimal filters that yield high signal to noise ratio (SNR) facilitating accurate detection of objects
in the presence of noise and other extraneous objects. During the summer fellowship period, the
author collaborated with his JSC colleague Dr. Richard Juday and Dr. B.V.K. Vijaya Kumar of

Carnegie Mellon University and developed algorithms for the design of several classes of optimal
filters: complex filters, real-valued filters, ternary valued filters, phase only filters, and coupled
filters. Some of these algorithms and their derivations will be presented in the following sections.

CORRELATION FILTERS

The theory of correlation filters for the recognition of known objects has been well discussed
in the literature [1]. It basically involves the following steps. From a knowledge of the reference

image s(x) (we will use I-D notation for the sake of simplicity), a filter function h(x) is designed.
When an image t(x) is to be tested to find whether the reference image is present in the test image or
not, the image t(x) is convolved with the filter h(x) to yield c(x). If c(x) has a well pronounced peak
above a preassigned threshold, then it is concluded that the reference image is present in the test
image; otherwise it is not. If a peak is present, from the position of the peak, one may also estimate
the location of the reference image in the test image. When h(x) is equal to s(-x), the matched filter
of the reference image, it can be shown that c(x) will yield the cross correlation between the test
image and the reference image. Hence, these filters are called correlation filters.

The implementation of correlation filters in the space domain is quite time consuming. An
alternate approach is to transform the test and reference images into the Fourier frequency domain,

multiply the transforms and then perform the inverse transform to obtain the filter output c(x). If
one uses digital techniques using electronic hardware, the Fourier transformation is also equally time
consuming. However, Fourier transformation can easily and almost instantaneously be carried out
using optical techniques. As a result, considerable research is being conducted on the design of optical
correlators for real time pattern recognition purposes. Since the invention of the holographic matched
filter for optical correlations by VanderLugt [2] in 1964, many other filters with improved

performance have been proposed. The accuracy of detection of these correlation filters depends to
a large extent on the absence of noise in an image. It may be noted that the nonreference image
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components present in an image may also be considered as noise. To account for the presence of noise
and to measure the performance of a filter in the presence of noise, signal-to-noise ratio (SNR) has
been introduced and procedures have been devised to design optimal filters that maximize the SNR

and thus improve the accuracy of identification.
Derivation of maximum SNR filters of different types (complex, phase only, ternary and

coupled filters) in the presence of image-plane noise but no detector noise has been presented in
literature. For the case of real filters, derivation of optimal filters starting from the fundamental

expression for SNR has not been done so far. We first present such a derivation obtained during the
fellowship period. This result has been submitted for publication [3].

OPTIMAL REAL CORRELATION FILTERS

Let s(x) denote the reference image and S(f) its Fourier transform. Let H(f) denote the filter
transform. In the absence of input noise the resulting ¢orrelator output at the origin is given by

c(O ) - _S(/)H(/)d f (1)

where the limits of integration are those implied by the bandwidths of S(f) and H(f) (whichever has
a smaller bandwidth.) A model for possible uncertainties in the input is the additive noise n(x). We

model this as a sample realization with mean _'n and power spectral density Pn(f). The additive noise
n(x) in the input leads to randomness in the output c(0). We can show that

E{c(0)} = _n H(0) + _S(f)H(f)df ...... (2)

and

Var{c(O)} = _Pn(f) IH(f)I _df (3)

When the input to the correlator is only noise n(x), the output c(0) will be a random variable with

mean #n H(0) and variance as given in Eqn. (3). For good detection, we need to separate the two
means as much as possible while keeping the variance small. A convenient measure for this is the

signal-to-noise ratio (SNR) defined as below:

SNR - IIS([)H(f) dfl 2

_Pn(f) l H(/) I_ d/

(4)

We will next derive the optimum real filter H(.) that maximizes the SNR. The derivation can be done
in more than one way. In the following we use discrete arguments and partial differential equations.
For the continuous argument case one may employ variational calculus and obtain identical results.
One may also employ Cauchy-Schwartz inequality to obtain the same result. We use such a technique
in the next section where detector noise is taken into account.
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Let us sample the frequency domain quantities at intervals Af to produce amplitudes A k and

phases ¢k :

Then

AkeXp(J#k) = S(k Af)

H k - H(kAf) (5)

P,',k" G(ka/)

SN .[r':':xo''""][r',",°xo<",']
E' enk
k

(6)

where t and k are summed over values appropriate to the filter bandwidth. For an extremum SNR,

each filter value H m is chosen so that the SNR is stationary; i.e., subject to the constraint

0-_m (SNR) - 0 (7)

Defining /_and B real __0 such that

Bexp(j_ )-_ AkHkexp(j#k)
k

(8)

and taking the partial derivative in (7) we get

HmPnraB2"Am HiPnk B cos(#m- #) (9)

We have, then,

Hm _ :m coS(#m_B) (10)

Fnm

with proportionality constant independent of m. The SNR is independent of a constant multiplier of

H k, so we may as well make Eqn. (10) an equality. Then we need only solve for #. Eqn.(10) indicates
several interesting things. As might have been expected, the optimum-SNR real filter value is
directly proportional to the local amplitude of the reference signal transform and inversely
proportional to the local noise power. The novelty in this result is that the filter is also weighted
according to how well the signal's local phase (#m) lines up with the phase (#) of the filtered result.

Now, to determine the filter completely, we need to find the value of/_. For this we need to
solve the nonlinear equations
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where

Am COS(Om-_)
nm-

a" Arg{_k HkAkexp(j#k) }

(11)

A traditional method of solving these equations is as follows: Choose a trial value for a = al. Solve

for H m and see if the result is consistent. That is, if the a calculated using the second expression is
equal to #1, then we have a stationary SNR. This is similar to the previous [4] approaches where
calculating a filter giving an extremum in correlation intensity involved a search over a single
parameter. Relating to the present case, we would require a search over B. As a significant advance,
we have been able to separate a in Eqn. (11). The search for a is over for real filters. Substituting
for H m in the expression for B in Eqn. (11) we have

_-_k COS(_k-$ )AkeXp(Jek)
nk

_-_k [exp(jeu)exp( -jB ) +exp( -j6 k)exp(jB )]Akexp(jt i,)

(12)

I A2- Arg exp(j_) _D _k exp(J2¢k)_exp(-J 2B
k /"nk )

The above will be true if and only if

rd +"½; where n is an integer
(13)

By substituting for B in the expression for SNR, we can show that n should be equal to zero for
maximum SNR.

We now give an abbreviated discussion of the derivation of the optimal real filter in the
continuous domain. Define u and v as follows.

v- [H_(f)Pn(f)df (I4)
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(The region of integration, ordinarily a single diffraction order, is implicit.) Following the variational
calculus approach given in more detail elsewhere [4], we denote the arbitrary disturbance function
as u('), so that the deviated value of the optimum real filtering function is H(-)+ a#(.) for a
(presumed small) scalar, a. The deviated value of the correlation field is obtained by replacing H(.)
by H(-)+ _('). Let ua be u evaluated with H(.)+ _(-) replacing H(') and similarly for va. The
first-order variation in SNR induced by _(-) is

That a given function H(.) produces an extremum of SNR is stated as

(15)

,(SNR)-0 , implying v 6u-u ,v (16)

A relatively straightforward extension of the method shown earlier leads to a form very similar to the
discrete case.

n(/) - ,4(/___2.)cos[, (/) - Pl ]
Pn(/) (17)

IJ2 - ArgIH(f)A(/)exp[jt(f)]df

We have Consistency if pl = _2" These expressions are of the same form as those obtained for the
discrete case with the replacement of integration in place of summation. Then applying the same
development as in Eqns. (12) - (13), we get

I .Ar.lr[S(f)_dfl
(18)

- (2)Arg_[SR(f)_(f)_df +j2_ SR(f) SI(f) df]pn(f)

We will now consider some special cases . The discussion in the following is restricted to the
continuous ease. Results for the discrete case are exactly analogous, as is apparent from the

congruence between Eqns. (11) and (17).

SR(/) SI(f) df - 0 ; .'. B - 0 or L. (19)
i) s(x) is real. Then f Pn(/) 2

[Srt(/)]' [si(/)]
ii) s(x) is real and I Pn(f) df - _ Pn(---"_ dr. Then B is arbitrary.

(20)
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[Sl(f)]2 dr. Then _ -
iii) s(x) is complex and _ Pn(/)

(21)

Cases i) and ii) correspond to the cases considered by Kumar [5] and case iii) is a new result.
The SNR of the real filter, obtained by substituting the optimal value of H(f) and simplifying

the expression, is given by

Is(/) P l,, [s(f)]2- l_._[_aj+ _, ____ dfl (22)SNRRMF Po(/) 2 J Po(/)2J

where SNRRM r represents the SNR of the real matched filter. A relative measure of performance
of the real filter in comparison with the complex matched filter is obtained as

I_ [S(f)]3 d/
SNRa_Mr 1 1 Pn(f)

SNP-cMr 2 2 I Is(/) P a/
en(/)

(23)

where SNRcM F represents the SNR of the complex matched filter. In the above expression we see
that the SNR of the optimal real filter is less than or equal to the optimal complex filter. However,
the maximum loss that results from the use of our optimal real filter is 3 dB.

Figure 1 in the earlier paper [5] shows the loss in SNR (relative to the matched filter) when
using the optimal real filter. That is valid here also. Only what is meant by "normalized even-part
energy" changes depending on Pn(/)" As shown before, we lose at most 3 dB in SNR (compared with
the matched filter) when we use the optimum real filter. This discussion also shows that the optimal
real filter is not the amplitude part of the complex matched filter.

DETECTOR NOISE AND SNR

When the correlation output c(0) is detected by a photodetector, several things happen.
Detectors respond only to Ic(0)h thus ignoring all phase information. Also, the detectors introduce

a gain and some noise. An accurate model for detector noise is complicated and must include the
signal dependent nature of detector noise. Instead, we will use the following simple model for y, the

detector output:

y - c(O) + nd. (24)

In this detector noise model, we assume (without loss of generality) that the detector gain is unity and

that the detector noise n d is additive. The noise n d is assumed to have a mean ud and variance od2.
The additive assumption is somewhat questionable. However, it makes the analysis tractable and it

helps us to illustrate the main point we want to emphasize (i.e., we must trade-off input noise
tolerance for detector noise tolerance). We will now find the mean and variance of y in Eqn. (24)

for the two possible input cases.
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Whentheinput containsonlynoisen(x) let theoutputbeYo.Thenthemeanandvarianceof
Yoaregivenasfollows:

E{Yo) " _d + #n (25)

and

Var{Yo} - o_ + _ Pn(f)lH(f)lZ df (26)

When the input contains signal s(x) corrupted by additive noise n(x), let the output be Yr Then the

mean and variance of Yl are given as below:

E{Yl} = #d + #n + [S(f)H(f)df (27)

and

Var{yl } - a_ + [Pn(f)lH(f)12 d f
(28)

Using the statistics in Eqns. (25)-(28), the SNR in the presence of detector noise can be expressed as

SNR _,
IE(yl } - E(y o }12

l (var{ya} + Var{Yo} )
2

_ I[S(f)H(f) dfl 2

2 + fPn(f) lH(f)12dfOd

(29)

Note that the only difference between the SNR expressions in Eqn. (4) and Eqn. (29) is the extra Od2

in the denominator of Eqn. (29). However this makes the optimal filter choices for the two SNR's

different. When adz is very small (compared to the input noise term), the two SNRs are identical and
the previous optimal filters will still be optimal. However, when od2 is very large ( such that the input
noise term can be ignored) SNR is simply proportional to IE{c(0}l'and we must simply maximize the
correlation value at the center. In the next section we derive expressions for H(f) that maximize the

SNR in Eqn. (29).

OPTIMAL FILTERS WHEN DETECTOR NOISE IS PRESENT

In this section we will determine H(f) that maximize the SNR in Eqn. (29). There are five
different cases: (1) Complex filters, (2) real filters, (3) phase only filters (4) binary phase only filters
and (5) coupled filters. In each case while determining these filters, we must use the condition

IH(f) l _, 1 (30)
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since the transmittance of an optical filter can never exceed unity. Also, without this constraint, the

detector noise variance Odz will not be meaningful.

Complex Filters

Let us allow H(f) to be complex. Let the filter energy Eh be defined as follows:

Eh - _[H(f)i_df
(31)

Then the SNR in Eqn. (29) can be written as below:

SNR - IIS(f )H(/) dfl _

_[ai_ + _.(/711_(/)J2a/

where

2
2 %

aid -

(32)

(33)

is the variance of an equivalent white noise at the input which gives the same effect at the origin of
the correlation plane as the detector noise with variance ad z for the given filter H(f).

To find the optimal choice of H(f) we now apply the Cauchy-Schwartz inequality to the
numerator to get the following:

iiS(./,)H(f)dfl2.[f S(f) [H(f) _Oi2d+ Pn(f) ]d/j2

_: Pn(/)id +

(

[r Is_( l 
L'to d+eo(I)j

(34)

Substituting Eqn. (34) in Eqn. (32), we obtain the following result:

IS(/)I _
SNR "- _ 2

aid + _n(/)

d f - SNRmax(a_d)

with equality occurring if and only if

H(f) - a
S "(/)

p.(/)aid +

(35)

(36)
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wherea is chosen to satisfy the constraint that the maximum magnitude of the filter is unity. Then
the optimal filter H(f) can be written as

s*(/)/[ °_d + Pn(/) ]

H°Pd/) - IS'(/)/[ °_a + Pd/)l_m_x
(37)

As aid2 is related to the detector noise Od2, this filter will also be optimal for a detector noise Od 2 =

aid2Eh where

Eh - _lH(/)l 2d� (3S)

Thus starting with aid2, we can design an optimal filter and find the corresponding detector noise for
which this filter is the optimal one. To design a filter for a given ad9, we may use either an

optimization scheme or do the following: Obtain a graph relating aid 2 and adz by designing a number
of filters with different values of aid2. Then from the graph, a suitable aid2 is picked for a given ad2.
Once we know aid2, we can design the optimal filter. It may be verified that for the special case of

Pn(f) = a constant, the classical matched filter is still the optimal filter.

Real Filters

Let us now consider the case when H(f) is real. Then using the same notation for E h as above, we
have

II S(f)H(]') dfl 2 I[S(f)H(f) dfl 2 cc"SNR - - ' -

a2d+I Pn(f)lH(f)l_"df 2 J'Pnt(f)IHCf)12df (39)

where

Expressing cc*

we get

as

2

¢d + Pn-
c - IS(f)H(f)df" and Pnt "

ICC* + C'C} 2cc* " I, 21cl

le.,(/)a:

(40)

(41)

(42)
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As for real filters H* = H, we can write the expression for SNR as

[_ (cS "(f)+c "S(f))H(f)df l
SNR - 21cl

j'ent(/) In(/)12a�

Applying Cauchy-Schwartz inequality we get

: cS'(13 +_____£'s(D_/Tnt(/) H(/) a/l

le.,cf)IH(/)ra/

Equality (and hence maximum SNR) is achieved iff

cS'(/)+ c'S(/) Is(/)l
- - a _cos(¢,(/)-#)

H(f) a 2IclPnt(f) Pnt(/)

(43)

(44)

(45)

where %(0 = Arg{S(f)), # = Arg{c} and a is a real constant such that the maximum response condition
is satisfied. To determine #, substitute the optimal H(f) in the expression for c (Eqn. (40)) and
simplify as

a (fIS(/)I2d[ + _-j2Br[S(f)l2d¢]eJB (46)
Icle ja- -- j_ _ c j_ ,

2 [ Pnt(/) Pnt(/) J

The above condition will be satisfied if and only if

#-IIArg[[S(J_.!:df. n,]
z [ _ r_ttl7

(47)

where n is an integer. Further we can show that SNR will be larger if n = 0 (or any even integer) than
when n is odd. Thus # value is given by

l  rS, [S(f)]2d¢] (48)

With this # value the maximum SNR value can be shown tO be
/ /

.... 1 , IS(f)l 2 J. 1 l, ts(/)] 2_J
_,VAm_ - -J--al + --|j--an2 Pntf/) 2/ Pnt 1

(49)
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The optimal H(f) satisfying the maximum condition is given by

IS(f) I cos(_,(/) - B)

nopt(f ) . Pnt(f) (50)
IS(f) l

I_ cos(,,(/) -_) _x
Pnt(/)

The above H(f) is optimum for a given input noise. To determine H(f) for a given detector noise one
can follow a procedure similar to that used in the complex filter case of either using an optimization

scheme or setting up a graph between aid2 and ad2 and selecting a suitable aid2 for a given Od2.

Phase Only Filter

Let H(f) be a phase-only filter (POF) with a region of support R defined below:

. e j_h(f) for f c R
H(f)

0 for f _ R

(51)

Substituting this in Eqn. (29) we obtain the following expression for SNR:

SNR -

= _Pn(/)
ad + d/

(52)

The denominator in Eqn. (52) does not depend on _h(f) and the numerator is maximized by choosing

%(f) = -%(f), i.e., the conventional POF maximizes the SNR in the presence of detector noise. The
next task is to find the optimal region of support R. Let A R denote the area of the region R. Then
the SNR in Eqn. (52) can be rewritten as follows:

(_[_(f)Id[I

SNR - (53)

The sNR expression in Eqn. (53) is identicaJ-io the SNR expression derived elsewhere [61 for the case
of no detector noise and input colored noise with spectral density [Pn(f) + ad2 / AR}. It is shown there

that the region of support R that maximizes the SNR must be of the form:

R m

/: [_Z_aIs(/)j

2

°d + p.(/)

(54)
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where T is an unknown threshold. Since A R depends on R , Eqn. (54) is an implicit equation. An
algorithmic procedure for determining R is given below:

To illustrate the workings of the algorithm, let us assume that S(f) is represented by an array
of 64 X 64 = 4096 pixels. Each frequency in this array may or may not be included in R. Thus there
are 24096 possible choices of R from which we must select the one that maximizes the SNR.

Exhaustive search is obviously impossible, but the characterization in Eqn. (54) proves useful. For

example, there are 4096 different choices for R with A R = 1. Among all of them, the best R is the
one that includes the highest value of IS(f)l/[Odz + Pn(f)]. Extending this to other A R values, we get
the following algorithm:

Step 0: Start with A R = 1.
Step 1: Compute

c(/) - Is(/)l
2

o d
_ + Pg/)
AR

(55)

Step 2:
Step 3:

Step 4:

Step 5:

Arrange sampled values of G(f) in the descending order as G I > G 2 > ... > Gr_ > 0.
Construct the optimal R*(A R) of area A R by including pixels corresponding to G 1, G 2.....

GAll.
Compute the SNR(A R) obtained by using R'(AR). If A R is greater than or equal to N, go to
Step 5. Otherwise go to step 2.

Determine the largest SNR(AR). This determines the optimal region of support.

The above algorithm involves N sorts where each sort is of N values. Since A R changes by
only l from one sort step to the next, we do not expect that the sorting order will change significantly
from one step to the next. This can be used to speed up the algorithm still further.

Ternary-Valued and Coupled Filters

Optimal ternary-valued filters (with values -1, +1, and 0) in the presence input and detector noises
have also been derived during the fellowship period. However due to lack of space, they are not
discussed in this report. Similarly, the design of optimal coupled filters in the presence of input and
detector noises have also been investigated. These results will be sent for publication in due course.

SUMMARY

In this report, the derivation of optimal real correlation filters when detector noise is not
present is first presented. Then a model for the detector noise is presented. Using this model, the
optimal filter design problem when detector noise is present is formulated. Derivations for the
optimal filter when the filter is an unconstrained complex filter, real filter, and phase only filter are

presented. Algorithms for their design are also presented. Implementation and testing of these
algorithms will be taken up during the follow-up grant period.
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